China best Various Timing Belt Pulleys pulley design

Product Description

CHINAMFG Machinery offers a wide range of high quality Timing Belt Pulleys and Toothed Bars/ Timing Bars.  Standard and non-standard pulleys according to drawings are available.

 
Types of material:
  1. AlCuMgPb 6061 6082 Aluminum Timing Pulley
  2. C45E 1045 S45C Carbon Steel Timing Pulley
  3. GG25 HT250 Cast Iron Timing Pulley
  4. SUS303 SUS304 AISI431 Stainless Steel Timing Pulley
  5. Other material on demand,  such as cooper,  bronze and plastic
 
Types of surface treatment:
 1.  Anodized surface -Aluminum Pulleys
 2.  Hard anodized surface — Aluminum Pulleys
 3.  Black Oxidized surface — Steel Pulleys
 4. Zinc plated surface — Steel Pulleys
 5. Chromate surface — Steel Pulleys;  Cast Iron Pulleys
 6. Nickel plated surface –Steel Pulleys; Cast Iron Pulleys
 
Types of teeth profile

Teeth Profile Pitch
HTD 3M,5M,8M,14M,20M
AT AT5,AT10,AT20
T T2.5,T5,T10
MXL 0.08″(2.032MM)
XL 1/5″(5.08MM)
L 3/8″(9.525MM)
H 1/2″(12.7MM)
XH 7/8″(22.225MM)
XXH 1 1/4″(31.75MM)
STS STPD S2M,S3M,S4.5M,S5M,S8M,S14M
RPP RPP5M,RPP8M,RPP14M,RPP20M
PGGT PGGT  2GT, 3GT and 5GT
PCGT GT8M,GT14M

 
Types of pitches and sizes

Imperial Inch Timing Belt Pulley,
1.     Pilot Bore MXL571 for 6.35mm timing belt; teeth number from 16 to 72;
2.  Pilot Bore XL037 for 9.53mm timing belt; teeth number from 10 to 72;
3.  Pilot Bore, Taper Bore L050 for 12.7mm timing belt; teeth number from 10 to 120;
4.  Pilot Bore, Taper Bore L075 for 19.05mm timing belt; teeth number from 10 to 120;
5.  Pilot Bore, Taper Bore L100 for 25.4mm timing belt; teeth number from 10 to 120;
6.  Pilot Bore, Taper Bore H075 for 19.05mm timing belt; teeth number from 14 to 50;
7.  Pilot Bore, Taper Bore H100 for 25.4mm timing belt; teeth number from 14 to 156;
8.  Pilot Bore, Taper Bore H150 for 38.1mm timing belt; teeth number from 14 to 156;
9.  Pilot Bore, Taper Bore H200 for 50.8mm timing belt; teeth number from 14 to 156;
10.  Pilot Bore, Taper Bore H300 for 76.2mm timing belt; teeth number from 14 to 156;
11.  Taper Bore XH200 for 50.8mm timing belt; teeth number from 18 to 120;
12.  Taper Bore XH300 for 76.2mm timing belt; teeth number from 18 to 120;
13.  Taper Bore XH400 for 101.6mm timing belt; teeth number from 18 to 120;

Metric Timing Belt Pulley T and AT
1.  Pilot Bore T2.5-16 for 6mm timing belt; teeth number from 12 to 60; 
2.   Pilot Bore T5-21 for 10mm timing belt; teeth number from 10 to 60; 
3.   Pilot Bore T5-27 for 16mm timing belt; teeth number from 10 to 60; 
4.   Pilot Bore T5-36 for 25mm timing belt; teeth number from 10 to 60; 
5.   Pilot Bore T10-31 for 16mm timing belt; teeth number from 12 to 60; 
6.   Pilot Bore T10-40 for 25mm timing belt; teeth number from 12 to 60; 
7.   Pilot Bore T10-47 for 32mm timing belt; teeth number from 18 to 60; 
8.   Pilot Bore T10-66 for 50mm timing belt; teeth number from 18 to 60;
9.  Pilot Bore AT5-21 for 10mm timing belt; teeth number from 12 to 60;
10. Pilot Bore AT5-27 for 16mm timing belt; teeth number from 12 to 60;
11. Pilot Bore AT5-36 for 25mm timing belt; teeth number from 12 to 60; 
12. Pilot Bore AT10-31 for 16mm timing belt; teeth number from 15 to 60; 
13. Pilot Bore AT10-40 for 25mm timing belt; teeth number from 15 to 60; 
14. Pilot Bore AT10-47 for 32mm timing belt; teeth number from 18 to 60; 
15. Pilot Bore AT10-66 for 50mm timing belt; teeth number from 18 to 60;
  
Metric Timing Belt Pulley HTD3M, 5M, 8M, 14M 
1.  HTD3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.  HTD5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.  HTD8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.  HTD14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore HTD5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
         14M-115; 14M-170

Metric Timing Belt Pulleys for Poly Chain GT2 Belts 
1.      PCGT8M-12; PCGT8M-21; PCGT8M-36; PCGT8M-62; 
2.      PCGT14M-20; PCGT14M-37; PCGT14M-68; PCGT14M-90; PCGT14M-125;

Power Grip CHINAMFG Tooth/ PGGT 2GT, 3GT and 5GT 
1. 2GT-06, 2GT-09 for timing belt width 6mm and 9mm 
2. 3GT-09, 3GT-15 for timing belt width 9mm and 15mm 
3. 5GT-15, 5GT-25 for timing belt width 15mm and 25mm

CHINAMFG RPP HTD Timing Pulleys 
1.   RPP3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.   RPP5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.   RPP8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.   RPP14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore RPP5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
     14M-115; 14M-170. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Pulley Sizes: Timing
Manufacturing Process: Sawing
Material: Aluminum
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

timing pulley

How do timing pulley systems ensure synchronized motion?

Timing pulley systems play a crucial role in ensuring synchronized motion in various mechanical systems. Here’s how timing pulley systems achieve synchronized motion:

1. Toothed Design:

Timing pulleys have teeth or grooves on their periphery that mesh with the teeth on the timing belt or chain. The toothed design creates positive engagement between the pulley and the belt or chain, preventing slippage and maintaining precise synchronization.

2. Timing Belts or Chains:

The timing pulley system works in conjunction with a timing belt or chain. The teeth on the belt or chain interlock with the teeth on the pulley, ensuring that the rotational motion is transferred accurately from the driving pulley to the driven pulley. The precise engagement of the teeth allows for synchronized motion between the pulleys.

3. Constant Pitch:

The teeth on the timing belt or chain and the corresponding teeth on the timing pulleys have a consistent pitch. The pitch refers to the distance between the teeth, and it remains constant throughout the length of the belt or chain. This constant pitch ensures that the teeth on the belt or chain engage with the pulley teeth at the same rate, maintaining synchronized motion.

4. Precise Manufacturing Tolerances:

Timing pulley systems are manufactured with tight tolerances to ensure accurate tooth profiles and consistent dimensions. The teeth on the pulleys and the teeth on the belt or chain are designed to match precisely, allowing for seamless interaction and precise synchronization. High manufacturing tolerances contribute to the reliability and efficiency of the system.

5. Tension Control:

Proper tension control is vital for achieving synchronized motion in a timing pulley system. The tension in the timing belt or chain needs to be adjusted correctly to ensure optimal engagement with the pulleys. Tensioners and idler pulleys are often used to maintain the appropriate tension, ensuring that the belt or chain remains securely engaged with the pulleys.

6. Suitable Pulley and Belt/Chain Selection:

Choosing the appropriate combination of timing pulleys and timing belts or chains is crucial for achieving synchronized motion. Factors such as pulley diameter, number of teeth, belt or chain pitch, and material selection need to be considered to match the specific requirements of the application. Proper selection ensures that the pulley system operates with accurate timing and synchronized motion.

7. Regular Maintenance and Inspection:

To ensure continued synchronized motion, regular maintenance and inspection of the timing pulley system are necessary. This includes checking for wear, proper tension, and alignment, and replacing any worn-out components. Routine maintenance helps identify and address potential issues that could affect the synchronized motion of the system.

By incorporating toothed design, timing belts or chains, constant pitch, precise manufacturing tolerances, tension control, suitable pulley and belt/chain selection, and regular maintenance, timing pulley systems ensure synchronized motion in mechanical systems. This synchronization is essential for accurate timing, coordination, and efficient operation of various applications.

timing pulley

How do timing pulleys contribute to precision and accuracy in machinery?

Timing pulleys play a significant role in enhancing precision and accuracy in machinery. Here’s an explanation of how timing pulleys contribute to precision and accuracy:

1. Synchronization of Components:

Timing pulleys ensure precise synchronization of different components in a machinery system. By using toothed timing belts or chains that mesh with the teeth on the pulleys, rotational motion can be accurately transferred from one pulley to another. This synchronization is vital for applications where precise coordination is essential, such as in robotics, printing presses, and conveyor systems.

2. Accurate Timing:

Timing pulleys, in combination with timing belts or chains, enable precise timing of operations in machinery. The teeth on the belt or chain engage with the teeth on the pulley, allowing for accurate positioning and control of the driven components. This accuracy in timing ensures that specific actions or tasks occur at the desired intervals, resulting in precise operation and improved overall performance.

3. Consistent Speed and Motion:

Timing pulleys contribute to maintaining consistent speed and motion in machinery. The teeth on the timing belt or chain engage with the teeth on the pulley, preventing slippage and maintaining a constant speed ratio between the driving and driven pulleys. This consistency in speed and motion is crucial for applications that require uniform movement, such as in CNC machines or automated assembly lines.

4. Reduced Backlash:

Timing pulleys help minimize backlash, which refers to the slight movement or play that can occur when there is a change in the direction of motion. The positive engagement between the teeth on the timing belt or chain and the pulley teeth reduces backlash, ensuring that there is minimal or no lost motion. This reduction in backlash contributes to improved precision and accuracy in the machinery.

5. Repeatable Performance:

Timing pulleys enable repeatable performance in machinery. The precise engagement between the teeth on the belt or chain and the pulley ensures that the same motion or action is replicated consistently. This repeatability is essential in applications that require consistent and accurate results, such as in automated manufacturing processes or precision measuring equipment.

6. Tolerance for High Loads:

Timing pulleys are designed to handle high loads while maintaining precision and accuracy. The toothed design and robust construction of timing pulleys allow them to transmit power effectively, even under heavy loads. This capability to withstand high loads without compromising precision ensures reliable performance in demanding applications.

7. Compatibility with Automation and Control Systems:

The precise and accurate nature of timing pulleys makes them compatible with automation and control systems. They can be easily integrated into computerized control systems, allowing for precise positioning and control of machinery components. This integration enhances the overall precision and accuracy of the system.

In summary, timing pulleys contribute to precision and accuracy in machinery by enabling synchronization of components, accurate timing, consistent speed and motion, reduced backlash, repeatable performance, tolerance for high loads, and compatibility with automation and control systems. These characteristics make timing pulleys a fundamental component in achieving precise and accurate operation in various mechanical systems.

timing pulley

Can you explain the importance of precision in timing pulley systems?

Precision is of utmost importance in timing pulley systems due to the critical nature of their applications. Here’s an explanation of why precision is essential in timing pulley systems:

1. Accurate Timing and Synchronization:

Precision ensures accurate timing and synchronization between the driving and driven components in a mechanical system. Timing pulley systems are commonly used in applications where precise motion control is necessary, such as engines, robotics, CNC machines, and automated systems. Any deviation from the intended timing can lead to errors, malfunctions, or decreased performance in these systems.

2. Consistent Power Transmission:

In a timing pulley system, the teeth on the timing pulley engage with the teeth on the timing belt, creating a positive drive system. Precision in the design and manufacturing of the timing pulley and timing belt ensures consistent power transmission without slippage or backlash. This reliability is crucial in applications that require accurate speed ratios, torque transmission, and consistent performance.

3. Positioning and Indexing Accuracy:

Precision in timing pulley systems allows for precise positioning and indexing of components. The teeth on the timing pulley and belt ensure accurate movement and positioning, enabling repeatable and controlled motion. This is essential in applications such as automated assembly lines, 3D printers, and precision motion control systems, where precise positioning is critical for achieving desired outcomes.

4. Reduced Wear and Maintenance:

Precision in timing pulley systems leads to reduced wear and maintenance requirements. When the teeth of the timing pulley and belt mesh precisely, there is minimal abrasion and elongation of the belt, resulting in increased longevity. Additionally, precise timing and synchronization minimize stress on the system, reducing the need for frequent adjustments and replacements.

5. Noise and Vibration Reduction:

Precision in timing pulley systems helps minimize noise and vibration. When the teeth of the timing pulley and belt are precisely matched, there is a smooth transfer of power, reducing noise generation and vibration. This is particularly important in applications where noise and vibration can affect the performance or comfort of the system, such as in precision instruments or equipment used in quiet environments.

6. System Reliability and Performance:

Precision contributes to the overall reliability and performance of timing pulley systems. Accurate timing, synchronization, and power transmission ensure that the system operates as intended, minimizing the risk of failures, errors, or inefficiencies. Reliable performance is crucial in critical applications where downtime or errors can have significant consequences.

In summary, precision is vital in timing pulley systems to achieve accurate timing and synchronization, consistent power transmission, precise positioning and indexing, reduced wear and maintenance, noise and vibration reduction, and overall system reliability and performance. Attention to precision during the design, manufacturing, installation, and maintenance of timing pulley systems is essential to ensure optimal functionality and meet the specific requirements of the application.

China best Various Timing Belt Pulleys   pulley design	China best Various Timing Belt Pulleys   pulley design
editor by CX

2024-04-04

Find Us

SSJ Timing Pulley Co., Ltd.

Mail: [email protected]

As one of leading manufacturers, suppliers and exporters of mechanical products in China, We offer reducers, sprockets, industrial and conveyor chain, belts, pulleys, gears, racks, gearboxes, motors, PTO Shafts, taper lock Bushing, vacuum Pumps, screw air compressors and many other products. Please contact us for details.

Recent Posts